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Abstract. The concurrent bridging of molecular dynamics and continuum12

thermodynamics presents a number of challenges, mostly associated with energy13

transmission and changes in the constitutive description of a material across domain14

boundaries. In this paper, we propose a framework for simulating coarse dynamic15

systems in the canonical ensemble using the Quasicontinuum method (QC). The16

equations of motion are expressed in reduced QC coordinates and are strictly derived17

from dissipative Lagrangian mechanics. The derivation naturally leads to a classical18

Langevin implementation where the timescale is governed by vibrations emanating19

from the finest length scale occurring in the computational cell. The equations of20

motion are integrated explicitly via Newmark’s (β = 0; γ = 1

2
) method, leading to a21

robust numerical behavior and energy conservation. In its current form, the method22

only allows for wave propagations supported by the less compliant of the two meshes23

across a heterogeneous boundary, which requires the use of overdamped dynamics24

to avoid spurious heating due to reflected vibrations. We have applied the method25

to two independent crystallographic systems characterized by different interatomic26

potentials (Al and Ta) and have measured thermal expansion in order to quantify the27

vibrational entropy loss due to homogenization. We rationalize the results in terms28

of system size, mesh coarseness, and nodal cluster diameter within the framework of29

the quasiharmonic approximation. For Al, we find that the entropy loss introduced by30

mesh coarsening varies linearly with the element size, and that volumetric effects are31

not critical in driving the anharmonic behavior of the simulated systems. In Ta, the32

anomalies of the interatomic potential employed result in negative and zero thermal33

expansion at low and high temperatures, respectively.34
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1. Introduction.35

Molecular dynamics (MD) provides a straightforward way to simulate thermally36

activated processes and field gradient-driven effects, including heat and mass transport.37

However, the characteristic time of MD is that of atomic vibrations, which limits the38

time and length scales accessible by direct simulation. Alternatively, when fields are39

smoothly varying, the configurational space can be discretized into finite elements (FE),40

where the reduced set of degrees of freedom (DOF) is the ensemble of element vertices41

and the material laws are continuum in nature. This nodal representation results in42

reduced computational overhead which can be directed to sampling larger time and43

space scales.44

In the presence of abrupt gradients, the FE method takes recourse to mesh45

refinement to improve the discrete representation of the elastic energy integrals for46

a continuous medium. However, when the mesh size approaches the atomistic limit,47

the constitutive relations are no longer valid, for they fail to capture the localized48

nature of the elastic energy functional. To circumvent this difficulty, combined49

atomistic/continuum approaches that use atomistic material descriptions where fields50

are non-linear, such as atomic-sized defects, while maintaining a coarse description51

elsewhere, have been developed [1, 2]. In this fashion, the computational power is52

harnessed according to the complexity of the material laws, resulting in an optimum53

compromise between numerical accuracy and computational overhead. Compared to54

direct atomistics, these techniques have the potential to produce significant time and55

length scale gains by treating smoothly-varying regions of the configurational space56

collectively.57

When using these methods, the existence of unstructured meshes during dynamic58

simulations gives rise to coupled domain boundaries separating portions of the59

configurational space with different resolutions. In such cases, interfaces may become60

non-compliant from a thermodynamic point of view, which results from the fact that61

continuum thermodynamics is formulated as a lengthscale-free theory, and cannot62

account for the discreticity associated with meshes of varying coarseness. As a63

consequence, time-dependent information may not be seamlessly transmitted, and the64

dynamic behavior across both sides of an interface is governed by the reflection of65

waves not supported by the domain of coarser description (and the transmission of66

those that are). While they may not generally be important at low temperatures for67

smoothly-discretized meshes, these effects are accentuated at resolutions that approach68

the atomistic scale at finite temperatures, a common occurrence in many situations of69

interest. This can lead to spurious thermodynamic behaviors, with thermal gradients70

and other artifacts originating from inhomogenous boundaries. The most patent effect71

is the unphysical heating of domains suffering reflections [3, 2, 4]. This complication is72

not trivially solved, and, again, stems from the inherent quantization of lattice phonons73

and the development of impedance discontinuities across coupled-domain boundaries.74

This is inherent to space discretization methods, and has not been strictly solved even75
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in FE [5, 6]. This is why there are rules of thumb for how fast the element size can76

be increased during mesh transition, and artificial bulk viscosities to impose viscous77

damping are used in methods such as finite elements and finite differences (e.g., ref. [7]).78

Techniques that resolve this limitation in the context of atomistic/continuum-79

bridging methods have been developed by, e.g., Cai et al [8] and E and80

Zhongyi [9] using memory kernel functions and modified boundary hamiltonians for81

interface atoms, respectively. However, both approaches have proven exceedingly82

demanding computationally, and have not been applied beyond simple proof-of-concept83

cases. Recently, more computationally-benign methods that minimize transmission84

impedances have been proposed. For example, Park et al [10] have derived more85

compact time-history kernels for 2D simulations, resulting in ‘bidirectional’ dynamics86

that filter lattice waves automatically. Another noteworthy technique is the coarse-87

grained molecular dynamics (CGMD) method of Rudd and Broughton [4], which has88

been constructed to provide a consistent treatment of the short wavelength modes89

which are present in the underlying atomistics but are missing from the coarse finite90

element mesh. In CGMD, the short wavelength modes missing from the mesh are91

taken to be in thermal equilibrium, and their average contribution is included in the92

dynamics of the system. Others, such as Curtarolo and Ceder [11] and Wagner et al93

[12], have proposed techniques to model thermal flow across heterogeneous boundaries,94

whereby all impinging waves contribute to the temperature fields of boundary nodes,95

which are smoothly transmitted to finite-element regions. However, phonons do reflect96

without being explicitly removed from the system, which in certain temperature ranges97

could lead to unphysical heating. Methods that take into account the lost entropy98

from the missing DOF in atomistic/continuum representations have been proposed for99

equilibrium thermodynamics simulations [13, 14, 15, 16, 17]. These approaches succeed100

in computing full thermodynamic averages across domains although they suppress local101

thermal fluctuations and cannot be applied to compute transport phenomena.102

Here we develop an approach similar to that of Qu et al [18] within the103

Quasicontinuum (QC) framework [19, 20]. We take advantage of the seamless bridging104

of length scales furnished by the QC formulation to write the equations of motion105

in terms of dissipative Lagrangian mechanics, with a viscous term that expends the106

thermal energy introduced by a Langevin thermostat through a suitable random force107

at the nodal level. Unlike Qu et al, however, the renormalization procedure does not108

depend on the element size or position, only the parameterization does, which emanates109

naturally from QC’s kinematic constraints. In other words, the equations of motion110

have the same form across the entire domain and are simply scaled by a nodal mass-111

weighed viscosity. In this fashion, phonons not transmitted across mesh boundaries are112

dampened in accordance with the imposed thermostat so as to sample stable canonical113

ensemble trajectories. Our method is fully anharmonic and can be used to study114

non-equilibrium, thermally-activated processes directly. However, impoverished phonon115

spectra in coarse regions result in an underestimation of thermal properties such as116

thermal expansion, specific heat capacities, etc. It is important to understand and117
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quantify this loss of entropy stemming from length scale inhomogeneities.118

Quantifying the loss of information across domain interfaces is generally done in119

terms of reflection coefficients involving characteristic impedances [4, 8]. A more direct120

way is by computing entropic losses via the Debye-Grüneisen model (quasiharmonic121

approximation) [21, 22, 16] or some other thermodynamic integration methods [23].122

The thermal expansion coefficient α is generally taken as a good metric to measure123

entropy loss, as all frequencies participate in thermal expansion, especially those most124

sensitive to volume changes. Here, we study the thermal expansion behavior of two125

metallic systems, one face-centered cubic (fcc) —Al—, one body-centered cubic (bcc)126

—Ta—, described by standard embedded-atom method (EAM) potentials. We quantify127

entropic losses in coarse meshes and express α in terms of QC’s critical parameters.128

We rationalize the results in terms of the mesh and cluster size effects on the system129

eigenfrequencies and propose rescaling strategies for coarse and inhomogeneous systems.130

This paper is organized as follows: Section 2 provides a concise review of QC and131

the general framework for dissipative Lagrangian mechanics. An equation of motion is132

then derived for the reduced DOF subset, and methods for solving it are discussed. In133

Section 3, the details of the computational implementation are given, with emphasis134

on the selection of a stability-ensuring parameterization. Section 4 contains all the135

dynamic results and their interpretation within the quasiharmonic approximation for136

both materials. Finally, in Section 5 we present a brief discussion of the method and137

the implications of our results and provide the conclusions of our work.138

2. Theory.139

2.1. Zero-temperature Quasicontinuum.140

To provide the background for subsequent developments, we briefly review the static

QC theory developed by Tadmor et al [19] and its adaptation by Knap and Ortiz [20].

We consider a set of N atoms occupying a subset of a simple d-dimensional Bravais

lattice defined by lattice vectors ai, i = 1, ..., d. The coordinates of the atoms in the

reference configuration of the crystal are:

X(l) =
d
∑

i=1

liai, l ∈ L ⊂ Z
d (1)

where l denotes the discrete lattice coordinates and Z is the set of integer numbers.

The corresponding atomic coordinates in the deformed configuration are q = {q(l), l ∈
L} ∈ X. The linear space X ≡ R

Nd may be referred to as the configuration space of

the crystal. The energy of the crystal is assumed to be expressible as a function of the

atomic coordinates, E(q). Moreover, any applied loads are considered conservative and

derived from an external potential Φext(q). Therefore, the total potential energy of the

crystal is:

Φ(q) = E(q) + Φext(q) (2)
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The stable equilibrium configurations of interest are the minimizers of this function over

the space X, i.e. the solutions to the variational problem:

min
q∈X

Φ(q) (3)

The essence of the QC method is to replace eq. (3) by a constrained minimization

of Φ(q) over a suitably chosen subspace Xh ⊂ X. To define Xh we begin by selecting a

reduced set Lh ⊂ L containing Nh < N representative atoms. Additionally, let Th be a

triangulation of Lh and suppose that the crystal lattice L is contained within a polytope

of Lh (which in general need not be a Bravais lattice†). The triangulation Th supports

a collection of shape functions, {ϕh(l|lh), lh ∈ Th}. The ϕh(l|lh) are continuous and

piecewise linear and their domain is restricted to the simplices K of the triangulation

Th, i.e. they take a value of unity at lh and vanish elsewhere. The positions of all atoms

in L can then be determined by interpolation of the coordinates of all lh ∈ Lh, namely:

q(l) =
∑

lh∈Lh

ϕh(l|lh)qh(lh) (4)

where qh = {qh(lh), lh ∈ Lh} is an array containing the nodal coordinates in the141

deformed configuration of the crystal —the spatial nodal coordinates—, i.e. an element142

of the linear space Xh of reduced dimension Nhd (cf. [20]).143

The reduced counterpart of eq. (3) then becomes:

min
qh∈Xh

Φ(qh) (5)

The minimizers of the reduced problem follow from the reduced equations of equilibrium:

fh(lh) =
∑

l∈L
f(l|qh)ϕh(l|lh) = 0 (6)

where f(q) = Φ,q (q) are the forces corresponding to q and f(l|q) is the value of f(q)144

at site l.145

As noted by Tadmor et al [19], however, the practicality of the method hinges on

the application of lattice summation rules in order to avoid the calculation of the full

atomistic force array f . Following Knap and Ortiz [20], cluster summation rules are used

as a compromise between numerical accuracy and computational efficiency. Clusters are

defined as C(lh) = {l : |X(l) − X(lh)| ≤ rc(lh)}, where rc(lh) is the radius of a sphere

centered on a representative atom lh. The application of the cluster summation rule to

the reduced equilibrium equations (6) yields:

fh(lh) ≈
∑

l′
h
∈Lh

nh(l
′
h)





∑

l∈Ch(l′
h
)

f(l|lh)ϕh(l|lh)



 = 0 (7)

† The selection of these representative atoms is rather arbitrary, although procedures have been devised

within the QC framework to factor Th directly into the formulation of the energetics of the crystal [24].
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where nh(lh) are the cluster weights, computed by requiring that the summation rules be146

exact for all shape functions (nh(lh) =
∑

l∈L ϕh(l|lh)). The calculation of the effective147

forces in eq. (7) is of complexity O(NhNc) where Nc is the number of lattice sites in a148

cluster of radius rc. More details on the implementation of QC and an analysis of the149

accuracy and convergence of the method may be found in ref. [20]. The QC method has150

been successfully applied to a number of cases involving localized deformation and long-151

range fields, such as nanoindentation [25], nanovoid deformation [26, 27], and nanopillar152

compression [28].153

2.2. The dynamical theory.154

2.2.1. General framework. We start from the generalized Lagrange equation for

holonomic non-conservative sytems, i.e. those where non-potential forces exist [29]:

d

dt

(

∂L

∂q̇

)

− ∂L

∂q
= Qp(q, q̇, t) (8)

where L(q, q̇, t) = T − U is the Lagrangian and Qp are the generalized non-potential

forces. T = 1
2
mq̇T q̇ and U(q) are the kinetic and potential energies of the system,

respectively‡. Without loss of generality, we assume that a linear relation exists between

Qp and the velocities:

Qp = −Γ(q, t)q̇ (9)

where Γ is a positive-definite matrix of dimension (Nd×Nd) whose components are the

damping coefficients of the system. The symmetricity of Γ allows us to write expressions

(9) as the derivatives −∂F
∂q̇

= Qp of the quadratic form [30]:

F =
1

2
q̇TΓq̇ (10)

which is ordinarily known as Rayleigh’s dissipation function and represents the rate at

which mechanical energy is converted to heat during a viscous process, Ė = −q̇TΓq̇.

From eqs. (9) and (10), (8) now becomes:

d

dt

(

∂L

∂q̇

)

=
∂L

∂q
− ∂F

∂q̇
(11)

which is Lagrange’s equation for dissipative systems.155

For homogeneous atomic systems, the viscosity matrix Γ can be written as:

Γ = νI (12)

where ν is the velocity damping coefficient and I is the (Nd × Nd) identity matrix. It156

is often convenient to cast eq. (12) as Γ = mτ−1I where m is an appropriate particle157

mass, and τ a characteristic damping time.158

‡ For simplicity, hereafter we omit the explicit dependence of L, T and U on time t.
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2.2.2. Quasicontinuum reduction. Following the same notation as in Section 2.1, we

now express eq. (11) in reduced QC coordinates. By recourse to expression (4), the

system Lagrangian now becomes:

L(q, q̇) =
1

2

∑

l

m(l)





∑

lh∈Lh

q̇h(lh)ϕ(l|lh)









∑

l′
h
∈Lh

q̇h(l′h)ϕ(l|l′h)



−

− U

(

∑

lh∈Lh

qh(lh)ϕ(l|lh)
)

= Lh(qh, q̇h) (13)

Similarly, Rayleigh’s dissipation function takes the form:

F(q̇) =
1

2

∑

l

m(l)τ−1





∑

lh∈Lh

q̇h(lh)ϕ(l|lh)









∑

l′
h
∈Lh

q̇h(l′h)ϕ(l|l′h)



 = Fh(q̇h) (14)

Inserting eqs. (13) and (14) into eq. (11), the reduced problem becomes:

∑

l

m(l)ϕ(l|lh)ϕ(l|l′h)q̈h(lh) =

∑

l

f(l|qh)ϕ(l|lh) −
∑

l

τ−1m(l)ϕ(l|lh)ϕ(l|l′h)q̇h(lh) (15)

where, as above, f(l|q) is the value of f(q) = U,q (q) at site l§. The equation of motion

in matrix notation becomes:

Mhq̈h + τ−1Mhq̇h = fh(qh) (16)

where

Mh = M (lh|l′h) =
∑

l

m(l)ϕ(l|lh)ϕ(l|l′h) (17)

is the consistent mass matrix. By virtue of (12), eq. (16) is equivalent to:

Mhq̈h + Γhq̇h = fh(qh) (18)

In practice, the consistent mass matrix is commonly replaced by a lumped mass matrix

for computational convenience. In QC we utilize the ‘row-sum’ lumping technique [31],

by which the mass matrix diagonal entries are simply:

Mh(lh, lh) = mh(lh) =
∑

l

m(l)ϕ(l|lh) (19)

Eq. (19) now becomes the form for Mh used in eq. (16).159

§ Note that the definition of U at this stage need not coincide with that of the potential function Φ

introduced in Section 2.1.
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Equation (16) is an inhomogeneous second-order ODE (ordinary differential

equation) representing viscous damping dynamics. The homogeneous form of this class

of equations can be expressed as a matrix ODE of the form:

ẋ = −τ−1Ix = Ax

which admits characteristic solutions of the type x = x0 exp {At}, where x = {q, q̇} is

a 2Nd-dimensional variable that represents a point in phase space, and x0 = {q0, q̇0}
is the initial state of the crystal. The system (block) matrix is:

A =

[

0 1

0 −τ−1

]

However, since the generalized potential U is not a simple function of q or t, particular160

solutions for eq. (16) are not available a priori. Next, we make the following assumption:161

we regard the reduced set of representative atoms Th as an ensemble of nodes suspended162

in a medium or solvent representing the neglected degrees of freedom. The effect of this163

medium may be approximated by a frictional drag on the {qh} set as well as random164

fluctuations associated with the thermal motions of the solvent particles. This behavior,165

known as Langevin dynamics, is best described using stochastic differential equations166

to account for the omitted DOF [32]. In adapting eq. (16) to a Langevin equation, we167

must bear in mind that in the general case of unstructured triangulations Mh and fh168

are also spatially-varying fields and the parameters that govern the dynamic behavior,169

notably τ (or ν), will also in general be spatial fields, τh = τ(qh).170

To map eq. (16) to a Langevin equation, we perform the following decomposition

on f(l|q) (first term of the r.h.s. of eq. (15)):

f(l|q) = f b(l|q) + R(l, t) (20)

where f b are the body forces, defined as in Section 2.1, eq. (6), and R(l, t) is an

instantaneous random force. Eq. (20) implies that U has the meaning of a potential

of mean force [33], i.e. U(q) ≡ E(q) +
∫

X
R(q, t)dq. After the above additive

decomposition, the generalized equation of motion becomes:

Mhq̈h + τ−1Mhq̇h = f b(qh) + Rh(t) (21)

where, for consistency:

Rh(t) = R(lh, t) =
∑

l

R(l, t)ϕ(l|lh) (22)

When τ is much larger than the relaxation time scale associated with the fluctuations

of the random force, equation (21) is the ordinary Langevin equation of a so-called

Markovian system. Under such approximation R(l, t) can be taken as a stationary

Gaussian random variable whose first and second moments are:

〈R(l, t)〉 = 0

〈R(l, t) ⊗ R(l, t′)〉 = 2νkBT I δ(t − t′)
(23)
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where the first expression refers to the time average of the random force and the second171

gives the covariance matrix. Here kB and T are, respectively, Boltzmann’s constant172

and the absolute temperature, and δ(t) is Dirac’s delta function. According to this173

definition, the random force represents a Wiener process with zero expected value and174

quadratic variation on [0, t] equal to t − t′, ∀ t′ ∈ [0, t] [34]. In relation to Langevin175

dynamics, the definition of the covariance matrix stems from the imposition of correct176

equilibrium averages, and implies that Rh(t) has no self-correlation, i.e. the system177

satisfies the dissipation-fluctuation theorem [35].178

Langevin dynamics can also be used as a thermostat, adding the dissipative forces179

and the random fluctuations to the Hamiltonian dynamics to allow molecular dynamics180

simulations to explore a canonical ensemble. As we shall see, we solve eq. (21) at the181

nodal level, with each representative atom being immersed in a homogeneous medium182

connected to a thermal bath represented by Rh(t). The temperature of the system183

being simulated is maintained via the relationship between Rh(t) and ν (eq. (23)). In184

Section 3 we discuss the details and numerical aspects of the implementation, and the185

implications of the configurational space reduction (L → Lh).186

2.3. Time-stepping algorithms.187

In calculations, we shall envision a time-stepping process by which a dynamic trajectory

is approximated at times t0, ...tn, tn+1 = tn + ∆t, .... First, we recast eq. (16) as the

following initial value problem:

ẋ = F (x), x(0) = x0 (24)

where x and x0 have the same meaning as in the preceding section, and F is a Lipschitz

map. We shall denote by xn the numerical solution at time tn. We define as algorithm

a mapping S(∆t) : X → X such that:

S(∆t = 0+) = id,

[

d

d(∆t)
S(∆t)x

]

∆t=0+

= F (x), ∀x ∈ X (25)

S(∆t) is applied recursively to compute the numerical solution as xn = Sn(∆t)x0. The

algorithm must be convergent in the sense that, if x(t) is the exact trajectory, then:

lim
n→∞

S(t/n)x0 = x(t) (26)

We are interested in stable and accurate time propagators for stochastic dynamics.188

In mechanical terms, long-time stability follows from the symplectic nature of the189

time propagator [36]. In statistical terms, symplecticity implies exact conservation of190

magnitudes in phase space, i.e. applying Gibbs statistical mechanics to well-defined191

ensembles of physical states [37].192
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3. Numerical implementation.193

3.1. Time integration algorithm.194

The most widely used class of direct time integration methods for solving problem (24)

(or, equivalently, eq. (16)) is the Newmark family of methods [38]. The general form of

the Newmark algorithm for a mechanical system with external forces F is [31]:

Man+1 + Cvn+1 + Kdn+1 = F n+1 (27a)

dn+1 = dn + ∆tvn +
∆t2

2
[(1 − 2β)an + 2βan+1] (27b)

vn+1 = vn + ∆t [(1 − γ)an + γan+1] (27c)

where dn, vn and an are the approximations of q(tn), q̇(tn) and q̈(tn), respectively.195

Eq. (27a) is the equation of motion in terms of the approximate solution, and (27b)196

and (27c) are finite difference approximations of the velocity and displacement vectors.197

The parameters β and γ dictate the stability and accuracy of the algorithm and contain198

as special cases many well-known and widely-used integration algorithms [31]. We now199

discuss our algorithm parametrization. For linear problems with diagonal M and C200

matrices, it is convenient to set β = 0 for explicit dynamics. This is advantageous as201

all matrices are trivially invertible and no matrix solver is needed. Explicit methods,202

however, only admit values of γ >
1
2
, which give only conditionally stable phase-203

space trajectories. The stability limit when β = 0 is achieved by imposing γ = 1
2

204

whereupon we recover the well-known central differences algorithm. This (β = 0; γ = 1
2
)205

version of the Newmark method is second-order accurate and is known to be symplectic206

and momentum preserving [39, 40]. However, the simplicity furnished by this choice207

of parameters sets limitations on the affordable time scale achievable in simulations.208

Generally, the critical time step securing the stability of the central difference method209

for a linear undamped system is given by the Courant condition [41], governed in QC210

by the shortest separation between representative atoms. In the atomistic limit of the211

method, this can lead to slow temporal evolutions. Alternative implicit integration212

techniques for long time step Langevin molecular dynamics simulations have been213

developed, see, e.g., refs. [42] and [43]. Time-saving and multiple-time-step algorithms214

have also been proposed for Langevin dynamics [44, 37]. Helfand and co-workers have215

proposed integrators for generalized stochastic differential equations [45, 46].216

By construction, M ≡ Mh and C ≡ Γh are diagonal matrices in our QC-Langevin

framework (note that here, by direct mapping to eq. (16), K ≡ Kh = 0). Each one of

the entries in the diagonal of Mh in eqs. (16) and (21) corresponds to the nodal masses

mh. By virtue of definition (19), mh = m(l)nh(lh), where nh(lh) is the nodal weight,

defined as in Section 2.1. In fully resolved systems like those QC is concerned with,

m(l) = ma, ∀ l, t, where ma is the atomic mass. Similarly, the diagonal components of

Γh are νh = mh/τ , where τ is also assumed to be constant in time. This linearity in

the formulation allows eq. (21) to be transformed from a matrix equation into a set of
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individual equations for each degree of freedom. We can then rearrange eqs. (27) into a

predictor step:

dn+1 = dn + ∆tvn +
∆t2

2
an (28)

and a corrector one:

an+1 =
fhn+1 − ch

(

vn + ∆t
2

an

)

mh + ch
∆t
2

(29a)

vn+1 = vn +
∆t

2
(an + an+1) (29b)

where, from eq. (20), fh = fbh + Rh is the nodal force consisting of the internal body217

forces and the random force.218

3.2. Random force.219

Instantaneous values of Rh are generated by sampling from a normal distribution using

the Box-Muller transformation [47], i.e. if u1 and u2 are independent random variables

that are uniformly distributed in the interval (0, 1] then:

z1 = (−2 ln u1)
1

2 cos(2πu2)

and

z2 = (−2 ln u1)
1

2 sin(2πu2)

are independent, normally-distributed variables with zero mean and unit variance. We220

discard one of these values at random and trivially convert the other to a normal221

distribution of mean µ and variance σ2 as r = µ + σz, where, after (23), µ = 0 an222

σ2 = 2mτ−1kBT/∆t. This value of Rh = r is then added to the body force fbh that223

enters eq. (29a) as fh.224

3.3. Numerical tests and determination of the timestep.225

The stability criterion for the (β = 0; γ = 1
2
) Newmark integrator is set by the shortest226

separation between adjacent representative atoms. The most stringent case is of course227

that of atomistic resolution, in which case ∆t is conventionally set to values smaller228

than the fastest characteristic eigenfrequency ωmax = 2πfmax of the system. However,229

conditionality is removed from the stability definition by ensuring that ∆t < τ [48].230

Therefore, the locus of stable (∆t, τ) diads is a triangle in the positive quadrant of the231

∆t-τ plane, delimited by the two stability conditions ∆t < 1/fmax and ∆t < τ . Figure232

1 schematically shows the stability region in the ∆t-τ space. However, the specific233

choice of the time step and the damping time within this region is material and problem234

dependent, and remains somewhat ad hoc so that numerical tests must be carried out235

to establish the optimal choice. These tests have been performed in the high-frequency236

limit, i.e. for atomistic systems in the canonical ensemble, seeking the highest possible237

∆t for which energy is conserved.238
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Figure 1. Schematic representation of the ∆t-τ stability space for Langevin dynamics.

The value νmin = ma/τmax gives the minimum viscosity that can be used in simulations.

After an extensive number of numerical tests, the selected values of ∆t and τ that239

produce stable trajectories while maximizing time advancement are given in Table 1 for240

the two materials studied here. The corresponding values of the inverse of fmax are also241

given for reference. By way of comparison, Qu et al use a maximum damping coefficient

Table 1. Time step, characteristic damping time, maximum eigenfrequency fmax =

ωmax/2π of a perfect atomic crystal for the two materials considered in this work,

namely Al and Ta.

Material ∆t (fs) τ (fs) 1/fmax (fs)

Al 5.29 70.55 106.0

Ta 0.66 8.82 184.8

242

of approximately one half the Debye frequency [18], which is ≈ 8.92 THz for Al and243

≈ 5.01 THz for Ta [49].244

3.4. The harmonic approximation in the QC framework.245

For the present analysis, let us recover momentarily the notation introduced in Section

2.1. We start with the harmonic form of the potential function Φ(qh):

Φ(qh) =
1

2
(qh − q0) K(q0) (qh − q0)

T (30)
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where q0 is a Nd vector representing an equilibrium configuration of the system and K

is the Hessian of Φ(qh). Without loss of generality, let us assume that q0 represents

the undeformed or reference configuration in Lh, i.e. a particular solution of eq. (5)

that satisfies the equilibrium conditions (6) when Φext = 0. Then, the components of

K (also known as the force constants) are:

Kαβ(lh, l
′
h) =

∂2E

∂qα(lh)∂qβ(l′h)
α, β = 1, ..., d

For simplicity, we hereafter restrict this study to a three-dimensional system occupying246

a volume V in an Euclidean space and fix d = 3. Let us remark at this point that the247

Hessian of the harmonic energy landscape is also mesh and cluster size dependent.248

The equations of motion for the reduced QC system interacting via a harmonic

potential of the form given in (30) are:

Mhq̈h = K (qh − q0) (31)

We now define the mass-weighted displacement as:

u =
√

Mh (q − q0) (32)

and perform the following change of variable:

K =
√

Mh D
√

Mh (33)

Then, the harmonic potential and the equations of motion become, respectively:249

Φ(uh) =
1

2
uhDuT

h (34)

üh = Duh (35)

where D is the (3Nh×3Nh) dynamical matrix. In general, D is Hermitian, and by virtue

of the geometric symmetries of cubic metals it is real as well, and hence symmetric. For

eq. (35) we seek solutions of the type [50]:

uh(qh) = ǫh exp [−i (ωt − kqh)] (36)

where ǫh is a polarization direction, ω is a vibration frequency, and k is a wave vector.

With this form, eq. (35) becomes:

ǫh ω2 = Dǫh (37)

Solving this eigenvalue problem‖ yields the 3Nh independent normal modes of vibration250

ω and eigenvectors ǫh of the reduced QC system.251

‖ Since D is real and symmetric, it can always be diagonalized by an orthogonal matrix ǫ.
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Now, from definition (33), the components of the dynamical matrix are:

Dαβ(lh, l
′
h) =

Kαβ(lh, l
′
h)

√

m(lh)m(l′h)
(38)

where the force constant Kαβ(lh, l
′
h) gives the reaction along β of node l′h when node

lh is infinitesimaly displaced along α. Recovering the definition of the nodal mass from

Section 3.1, m(lh) = manh(lh), we can re-write eq. (38) as:

Dαβ(lh, l
′
h) =

Kαβ(lh, l
′
h)

ma

√

nh(lh)nh(l
′
h)

(39)

In the atomistic limit, all the nodal weights are equal to unity and eq. (39) takes the

standard microscopic form [50]. Next, we make use of the expressions derived by Knap

and Ortiz [20] to define the nodal weights in the context of cluster-based summation

rules for QC¶:

nh(lh) =

∑

l∈L ϕh(l|lh)
∑

l′
h
∈Lh

∑

l∈Ch(l′
h
) ϕh(l|lh)

(40)

The numerator in eq. (40) simply sums to the total number of atoms in the system, N .

For its part, the double sum in the denominator can be approximated for structured

meshes (all simplices in Th equal) as NcNh:

nh(lh) ≡ nh ≈ N

NcNh

When NcNh > N , signaling cluster overlap, then nh is set equal to one. This simplified

form of nh is then introduced in eq. (39), which then becomes:

Dαβ(lh, l
′
h) ≈

NcNh

maN
Kαβ(lh, l

′
h) (41)

The number of atoms Nc in a cluster of radius rc is Nc = 4π
3

rc
3ρa, where ρa = N/V

is the atomic density of the undeformed configuration. Similarly, the ratio N/Nh gives

the number of atoms in each simplex of a structured mesh. Assuming tetrahedral

triangulations with a characteristic element size h:

N

Nh

≈ ρach
3

where c is geometric constant (c = 1√
72

for regular tetrahedra). It then follows from eq.

(41) that:

Dαβ(lh, l
′
h) ≈

4π

3mac

(rc

h

)3

Kαβ(lh, l
′
h) (42)

Noting that ω ∝
√

D and lumping the prefactor on the r.h.s. of eq. (42) into a single

constant C, we have that:

ω ∝ C
(rc

h

)
3

2

√

Kαβ(lh, l
′
h) (43)

¶ In Section 3.2 of their paper.



Marian et al 15

In fcc crystals, symmetry reduces the number of force constants for the undeformed252

configuration to three independent values for the first nearest neighbor shell, and two for253

the second [51, 52]. These force constants possess non-obvious system-size dependences254

themselves, although, generally, softening is to be expected with increasing interparticle255

distance.256

Eq. (43) contains length scale dependencies of fundamental importance in the257

Quasicontinuum context, and effectively establish the ‘hardness’ of the vibrational258

frequency spectrum in a QC system. The mass factor (rc/h)3/2 suggests that coarser259

meshes give rise to softer spectra, whereas larger clusters produce higher energy260

vibrations. The dependence on mesh and cluster size of the other term in eq. (43)261

—the force constants— will be explored in Section 4.1.3.262

3.5. Thermal expansion within the quasiharmonic approximation.263

To link the vibrational properties of a QC system with a fundamental crystal property

such as thermal expansion, we start from the reduced system introduced in Sections 2.1

and 2.2.2. From eq. (13), suppose that the system is governed by a Hamiltonian of the

form:

Hh(qh,ph, θ) =
∑

lh

ph
2

2mh

+ Φh(qh, θ) (44)

where ph = mhq̇h are the momenta. Further, in eq. (44) we assume isotropic thermal

expansion (e.g. cubic crystals) whence only a dependence on the volumetric strain

θ = ∆V/V need be considered. The partition function for the system of distinguishable

particles associated with this Hamiltonian is [53]:

Zh(θ, T ) =
1

(2π~)3Nh

∫

exp
{

− Hh(qh,ph, θ)

kBT

}

dqhdph (45)

where ~ is Planck’s constant. Assuming the harmonic form of eq. (34) for Φh, the free

energy takes the form:

Fh(θ, T ) ≈ Φh(0, θ)) − kBT

(

3Nh

2
ln

{

mhkB
2T 2

~2

}

−
3Nh
∑

i

ln {ωi(θ)}
)

(46)

where, again, the ωi(θ) are the eigenfrequencies of Kαβ(lh, l
′
h)|0, which, by virtue of264

the quasiharmonic approximation, are assumed to depend on θ rather than T . The full265

derivation of the free energy expression in eq. (46) is given in the Appendix.266

Now, in the limit of small deformations, the volumetric expansion coefficient β for

isotropic media is given by the following thermodynamic relation:

β = 3α =
1

(1 − θ)2

(

∂θ

∂T

)

P

=
1

(1 − θ)2

(

∂θ

∂P

)

T

(

∂P

∂T

)

V

=

= − 1

B(1 − θ)

(

∂P

∂T

)

V

(47)
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where α, P and B are, respectively, the linear expansion coefficient, the pressure and

the isothermal bulk modulus. The term (1 − θ)−1 is simply the ratio V/V0, where V0 is

a reference volume usually taken as that of the undeformed configuration at 0K . The

pressure can be directly obtained as

P = −
(

∂F

∂V

)

T

=
1

V

∂F

∂{ln (1 − θ)}

and therefore:

α = − 1

3BV0

∂2F

∂T∂{ln (1 − θ)} (48)

Inserting eq. (46) into (48), the reduced thermal expansion coefficient evaluates to:

α = − kB

3BV0

3Nh
∑

i=1

∂ {ln ωi(θ)}
∂{ln (1 − θ)} (49)

where the term inside the sum is customarily known as the individual Grüneisen267

parameter of each normal mode and measures the variation of ωi with deformation268

[54, 55]. Thus, within the quasiharmonic approximation, it is assumed that the269

Grüneisen parameter(s) is(are) independent of temperature, which gives rise to constant270

thermal expansion coefficients in the entire temperature range [56]. This is generally271

acceptable for transition metals, although notable exceptions exist, as we shall see.272

See Touloukian et al [60], Srivastava [56] and Ho and Taylor [57] for a more in-depth273

discussion on the validity of the quasiharmonic approximation for thermal expansion274

calculations.275

The last two terms on the r.h.s. of eq. (46) give an idea of the loss of entropy276

attendant to the reduced QC system. Limiting the sums at Nh particles, rather than277

N , will intrinsically result in lower entropic contributions to the total free energy. In278

addition to reduced numbers of available eigenstates, equation (43) shows that these279

are modulated by the weight factor (rc/h)3/2 (which typically < 1), i.e., for a fixed Nh,280

the entropic contribution of the reduced set of frequencies will be further diminished by281

mesh effects. Both of these effects impact directly the thermal expansion coefficient of282

the material by way of equation (49).283

In calculations, we compute the free energy as in eq. (46) and obtain α directly284

from eq. (49). The term Φh(0, θ) and the eigenfrequencies are obtained statically with285

QC as a function of θ. The dynamical matrix coefficients (38) can be evaluated from a286

purely elastic continuum framework [58] or using Richardson’s interpolation to evaluate287

the force constants [59]. The thermal expansion coefficients computed in this fashion288

are then compared with the dynamic values of α.289

Next, we present results of thermal expansion measurements from 3D dynamic QC290

simulations in two representative materials, namely Al and Ta. Subsequently, analyses291

of the measured data are provided within the quasiharmonic approximation framework292

derived in this Section.293
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4. Results294

In this section, we study the dynamic behavior of Al and Ta as a function of the

three critical QC parameters: system size, N , mesh size, Nh, and cluster size, rc. The

objective is to ascertain the effect of each of these on the temperature-dependent thermal

expansion of both material systems. To measure α directly from canonical QC runs (i.e.

in the NhPT ensemble), we perform a series of simulations for a given configuration

(N,Nh, rc) at several temperatures using the parametrization extracted in Section 3.3.

When the system is seen to reach steady state, we perform a time average of the observed

volume as:

〈V 〉T =

∫∞
t1

Vi(t)|T dt
∫∞

t1
dt

= nt
−1

nt
∑

i=1

Vi(N,Nh, rc)|T (50)

where nt is a sufficiently high number of time steps and Vi is the instantaneous system

volume at time ti = i∆t. Here, i = 1 marks the first time step after steady state has

been achieved. Vi is computed directly from the addition of all the tetrahedral element

volumes in Th. Then, the thermal expansion coefficient is straightforwardly obtained as:

α(N,Nh, rc) =
1

3V0

d {〈V 〉(T )}
dT

(51)

where V0(N,Nh, rc) is the equilibrium volume of the system as obtained via static295

relaxation. As is customary [60, 61], the thermal expansion coefficient is evaluated296

at room temperature (298K) from a third-degree polynomial fit to the data.297

For simplicity, hereafter we refer to cluster sizes in terms of the maximum nearest-298

neighbor shell they encompass. Thus, by recursive neighbor shell construction in the fcc299

lattice, cluster sizes of 2, 3 and 4 in reality indicate rc ≈ a0, 1.225a0, and 1.414a0, which300

contain 18, 42 and 54 lattice points respectively+. For a number of reasons not related301

to this paper [20], our test samples are always finite cubic systems. This introduces the302

need to monitor surface effects and capillary forces —nonexistant in periodic systems—303

on volume expansion, although these are not expected to be important for sufficiently304

large systems.305

4.1. Aluminum results.306

4.1.1. Thermal expansion from dynamic simulations. Fcc Al is modeled using the307

glue potential developed by Ercolessi and Adams [63], which is fitted, among other308

parameters, to the experimental lattice constant of a0 = 4.032 Å and the three cubic309

elastic moduli. One salient feature of this potential is that it possesses excellent surface310

and thermal properties (see also: Liu et al [64]), something of particular importance in311

our case, where only finite systems limited by surfaces, upon which boundary conditions312

are applied, are simulated.313

+ Face-centered cubic lattice shells can be constructed by recourse to the formula [62]: dshell =
√

ishell

2
,

where dshell and ishell are the distance (in lattice units) and index number of each nearest-neighbor

shell.



Marian et al 18

QC can be thought of as a technique that contains full atomistics and continuum314

elasticity as special limits. As such, the natural limit of our finite-temperature QC315

at the finest scale is MD. Ercolessi and Adams give a thermal expansion coefficient316

of αMD = 1.79 × 10−5 K−1 at room temperature for a periodic Al system containing317

10752 particles [63]∗. To establish our atomistic baseline we first perform dynamic QC318

simulations at zero pressure of finite 16a0×16a0×16a0 and 32a0×32a0×32a0 Al crystals319

containing, respectively, 17969 and 137313 atoms. V0 for these systems is 2.662 × 105
320

and 2.138 × 106 Å3, respectively. Figure 2 shows the temperature dependence of the321

systems’ volume. Third-degree polynomial fits to the data yield αat = 1.72 × 10−5 and322

1.70 × 10−5 K−1 at 298K for the 17969 and 137313-atom systems respectively. The323

polynomial coefficents are given in Table 2. The small discrepancy (≈ 4%) between the324

periodic MD sample considered by Ercolessi and Adams and our finite systems adds325

confidence to the QC calculation and suggests that the associated surface effects are326

small.
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1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

0 200 400 600 800

V
/V

0

T [K]

α16a0×16a0×16a0
=1.72×10-5 [K-1]
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Figure 2. Thermal expansion behavior of two finite Al crystals containing 17969

(dimensions: 160 × 160 × 16a0) and 137313 (32a0 × 32a0 × 32a0) atoms. The

values at 298K of third-degree polynomial fits give thermal expansion coefficients of

α = 1.72 × 10−5 and 1.70 × 10−5 K−1 respectively. The error bars (very small for the

320 × 320 × 32a0 system) are associated with volume fluctuations in equilibrium.

327

Next we study cluster and mesh size effects on the values of V0 in eq. (51) for both328

sample sizes considered. This is important because errors in the computation of α from329

eq. (51) can also enter via the calculation of V0. For this analysis, we conveniently330

express the mesh size in terms of the total number of represented atoms n′
h = N/Nh,331

∗ Pearson gives an experimental value of 2.36 × 10−5 K−1 [65].
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Table 2. Coefficients of the third degree polynomials V (T )/V0 = aT 3 + bT 2 + cT + d

plotted in Fig. 2. From eq. (51), α(T ) = 1

3

(

3aT 2 + 2bT + c
)

. d is always necessarily

equal to one, as, at T = 0, V (0) = V0 is imposed.

Sample size a b c d

16a0 × 16a0 × 16a0 −8.53 × 10−12 2.06 × 10−8 4.17 × 10−5 1.00

32a0 × 32a0 × 32a0 6.10 × 10−12 6.18 × 10−9 4.56 × 10−5 1.00

which can be regarded as a first-order measure of the nodal weight. In this fashion,332

the inverse of n′
h acts as the N -normalized number of representative atoms. By way of333

example, Fig. 3 shows different degrees of mesh coarsening for the 32a0×32a0×32a0 Al334

crystals. Two types of meshes have been generated, namely, simple cubic (sc) and face-335

centered cubic (fcc)♯. The variation of V0 as a function of 1/n′
h and rc is displayed in Fig.336

4. Results are normalized to the fully-atomistic relaxed volumes given in the previous337

paragraph. For small numbers of Nh, both parameters have a noticeable influence on338

the value of V0. However, at 1/n′
h ≈ 0.14, V0 is already fully converged to the relaxed339

atomistic equilibrium volumes.340

To ascertain the effect of mesh and cluster sizes on the value of the thermal341

expansion coefficient in the 32a0 × 32a0 × 32a0 system, we have carried out simulations342

with six different degrees of coarseness for cluster sizes of 2, 3 and 4. By way of example,343

in Fig. 5 we show the volume vs. time curves as a function of temperatures for the344

(N=137313, Nh=729, rc=4) system. 〈V 〉(T ) is measured during ∼30 to 50 ps according345

to eq. (50) after steady state is reached. All simulations are always preceded by a 25-ps346

thermalization period from an initial state corresponding to the ‘frozen’ (zero kinetic347

energy), unrelaxed cubic sample (2.138 × 106 Å3). All the cases simulated here are348

qualitatively similar to that shown in Fig. 5, with larger fluctuations occurring for a349

given temperature as Nh decreases.350

Results for four representative configurations are shown in Fig. 7. In this case, using

third-degree polynomial fits is inadequate because the structure displayed by each curve

(each mesh) is not necessarily related to the V -T behavior. This structure, however,

would be artificially captured by the polynomial fits, resulting in spurious thermal

expansion coefficients. Hence, for this specific analysis we assume constant thermal

expansion and simply fit the data to a linear equation of the form:

Veq(T ) = cT + V0 (52)

where, naturally, α = c/3V0. Results for α for all the cases considered are compiled in351

Table 3. In light of the results, two general assertions can be made. First, the dominant352

linear behavior of the V -T relation is gradually lost as h grows. Indeed, for the 729-node353

case, the system’s volume shows no clear temperature dependence and only uncorrelated354

♯ Note that the underlying atomistic structure for Al is always fcc, even if the constructed triangulation

is sc.
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(a) Nh = 35937, 1/n′
h = 0.2617 (b) Nh = 17969, 1/n′

h = 0.1290

(c) Nh = 4913, 1/n′
h = 0.0358 (d) Nh = 2457, 1/n′

h = 0.0179

(e) Nh = 365, 1/n′
h = 0.0027 (f) Nh = 63, 1/n′

h = 0.0005

Figure 3. Mid-section cut of the relaxed 32a0 × 32a0 × 32a0 system for several mesh

coarsenings.

excursions about V/V0 = 1 are observed. The slope of the curves (directly proportional355

to the thermal expansion coefficient) also diminishes with increasing mesh size. Second,356

cluster size has little or no effect on the temperature behavior of the system’s volume.357
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Figure 4. Normalized equilibrium volume V0 as a function of the nomalized number

of representative atoms. The volumes are calculated via conjugate-gradient energy

minimizations and are normalized to the relaxed volumes of the atomistic systems of

2.662 × 105 and 2.138 × 106 Å3 for the 16a0 × 16a0 × 16a0 and 32a0 × 32a0 × 32a0

systems respectively. The unrelaxed volumes (corresponsding to an infinite system) in

each case are 2.685 × 105 and 2.148 × 106 Å3.
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Figure 5. Time evolution of the system volume at five different temperatures for

the (N=137313, Nh=729, rc=4) system. Measurements start only after steady state

is assumed to be reached at 25 ps. In all cases, simulations are initialized from the

unrelaxed state with zero kinetic energy.

Similar conclusions can be extracted for the 16a0 × 16a0 × 16a0 data. The thermal358
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Figure 6. Thermal expansion behavior of a 32a0 × 32a0 × 32a0 Al system containing

137313 lattice sites for four mesh sizes. Results in all cases are given for three different

cluster sizes. The expected linear expansion behavior deteriorates progressively as the

mesh is coarsened.

expansion behavior for this system is provided in Fig. 7 for four representative meshes.359

Linear V -T dependencies are clearly established for the 4913 and 729-node cases,360

whereas less well-defined trends are observed for the higher coarsening cases of 125361

and 27 nodes. As for the 32a0 × 32a0 × 32a0 samples, the cluster size has little or no362

influence on the measured volumetric expansion. All the numerical calculations carried363

out for this system are also given in Table 3.364

The calculated values of α compiled in Table 3 are plotted in Figure 8 as a function365

of the average number of atoms represented by each node n′
h. Clearly, for low values366

of n′
h(6 50), the cluster size dependence is practically nonexistent. For larger values,367

representative of coarser meshes, some uncorrelated varibility appears. Regarding the368

correlation between the thermal expansion coefficient and the mesh size, we refer to369

the derivation carried out in Section 3.5. The summation in eq. (49) implies that370

a linear relation exists between α and Nh. This means that α should vanish when371

Nh goes to zero, or, in other words, when n′
h approaches infinity. Additionally, in372

the atomistic limit (n′
h = 1), the thermal expansion coefficient must be equal to that373

calculated in Fig. 2. Consequently, we try a fitting function of the form α(n′
h) = a/n′

h
b,374

where a and b are fitting constants. The physical meaning of a is clear from this375

discussion: a ≡ α(1) ≡ αat. It is not clear a priori what the value of b should376

be, although b = 1 would suffice to meet the above conditions.. In any case, after377

considering for the sake of accuracy a subset of the data in Table 3 corresponding to378
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Table 3. Compilation of all the thermal expansion coefficient data (in K−1) for

the 16a0 × 16a0 × 16a0 (17989 lattice sites) and 32a0 × 32a0 × 32a0 (137313 lattice

sites) Al systems obtained from dynamic simulations as a function of the mesh and

cluster sizes. The mesh size is expressed as both the number of nodes Nh and the

approximate number of lattice sites represented per node (N/Nh). We note that, for

the fully-atomistic systems, α = 1.72 × 10−5 and 1.70 × 10−5 K−1, respectively.

Mesh size Cluster size

Nh
N
Nh

2 3 4

1
6
a
0
×

1
6
a
0
×

1
6
a
0

27 666.3 2.60 × 10−8 7.61 × 10−9 2.90 × 10−8

125 143.9 4.19 × 10−8 3.53 × 10−8 3.21 × 10−8

365 49.3 2.76 × 10−7 1.37 × 10−7 3.64 × 10−7

729 24.7 6.12 × 10−7 8.55 × 10−7 7.51 × 10−7

2457 7.3 2.29 × 10−6 2.12 × 10−6 2.14 × 10−6

4913 3.7 4.49 × 10−6 4.35 × 10−6 4.42 × 10−6

3
2
a
0
×

3
2
a
0
×

3
2
a
0 729 188.4 7.24 × 10−8 6.61 × 10−8 8.53 × 10−8

2457 55.9 2.80 × 10−7 2.48 × 10−7 3.44 × 10−7

4913 27.9 7.41 × 10−7 8.25 × 10−7 6.05 × 10−7

17969 7.6 2.17 × 10−6 2.22 × 10−6 2.20 × 10−6

35937 3.8 4.10 × 10−6 – –

a cluster size of rc = 4 (including both sample sizes), the least-squares fitting results379

in α(n′
h) = 1.53 × 10−5n′

h
−0.97. The results for a and b are in excellent agreement with380

their rationalized values. Adding any other subset of the data in Table 3 only results381

in small deviations of a and b obtained for rc = 4. It is worth noting, however, that382

the 16a0 × 16a0 × 16a0 results appear to indicate the existence of two regimes, both383

characterized by the same exponent b ≈ 1 but with slightly different prefactors. The384

one below n′
h ≈ 50 yields the same value for a as the rc = 4 data, whereas the one above385

is about 10% lower. On the basis of the results shown in Figs. 7 and 6, where for coarser386

meshes the linear behavior of α is poorly established, we simply attribute this effect to387

noise in the thermal expansion measurements and assume that all the data follow the388

same physical behavior with sporadic excursions due to numerical error.389

We emphasize that for n′
h = 1 we recover the atomistic thermal expansion coefficient

from a data set that includes meshes of varying coarseness but not the fully atomistic

configuration. This is an important and encouraging result, for it implies that the

thermal expansion limit is naturally recovered from dynamic QC simulations, and that

α is inversely proportional to the weight of the representative atoms. Evidently, in the

limit of an infinitely coarse mesh α tends to zero, as there are no vibrational DOF to

support any volumetric expansion. It is hence verified that, ∀ n′
h ∈ [1,∞):

lim
n′

h
→0

α(n′
h) = αat
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Figure 7. Thermal expansion behavior of a 16a0 × 16a0 × 16a0 Al system containing

17989 lattice sites for four mesh sizes. Results in all cases are given for three different

cluster sizes. The expected linear expansion behavior deteriorates progressively as the

mesh is coarsened.

and

lim
n′

h
→∞

α(n′
h) = 0

The behavior of α shown in Fig. 8 also suggests that it does not depend on the total390

system size. This implies that our 16a0×16a0×16a0 and 32a0×32a0×32a0 samples are391

beyond the scattering limit where the population of bulk phonons is sufficiently high392

to outweigh non-periodic surface phonons [66]. Above this limit, which we have not393

established here, one would presumably find that a single universal relation governs the394

dependence of the thermal expansion coefficient with the mesh size. In that regime, the395

difference |αat − α(n′
h)| can be used as an error estimator of the total entropy of the396

coarsened system, which could be used for re-scaling purposes.397

4.1.2. Thermal expansion from free-energy calculations in the quasiharmonic398

approximation. In this section we rationalize the results obtained via direct dynamic399

QC simulations in Section 4.1 utilizing the theoretical framework derived in Section400

3.5. Our objective is to recover the thermal expansion coefficient attendant to each401

(N,Nh, rc) system purely from fundamental crystal properties.402

To evaluate the volume derivatives in eq. (49) we use the following approach. First,403

we compute Fh-θ curves using eq. (46) at several temperatures. We sample a sufficient404

number of points to ensure that the equilibrium volume is enclosed in the volume range405
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Figure 8. Thermal expansion coefficient as a function of the approximate nodal

weights. The dashed line is a least-squares fit of the form α(nh) = a/nh
b (where a and

b are constants) to the data corresponding to rc = 4 for both sample sizes.

explored. As shown in Section 3.5, in this case V is linear in T , so that we simply406

fit the locus of the temperature-dependent equilibrium volumes to eq. (52). In this407

fashion, the Grüneisen parameter is calculated indirectly for each (N,Nh, rc) system408

and the thermal expansion coefficient can be readily obtained. This approach requires409

that both the internal energy, Φh(0, θ) in eq. (46), and the vibrational density of states410

(vDOS), obtained via eq. (37), be calculated as a function of volume for each one of the411

systems considered.412

To test the validity of this approximation, we first calculate the atomistic thermal413

expansion coefficient and compare it to the value of αat = 1.79 × 10−5 K−1 given by414

Ercolessi and Adams [63]. The vibrational spectra for a periodic 4000-atom system are415

given in Fig. 9(a) as a function of the linear dimensional change a/a0
††. We can see416

that expansion results in a ‘redshift’, i.e. a narrowing of the normal frequency band417

toward lower energies.418

With this information we then calculate Fh(T, a/a0) and plot it in Fig. 10(a) at419

a number of temperatures. From second-order polynomial fits to the data at each420

temperature we obtain the equilibrium lattice constant a at each temperature. The421

temperature dependence of these equilibrium lattice parameters (assumed linear, see422

Fig. 10(a), r.h.s.) gives the linear expansion coefficient, which for this calculation is423

1.79× 10−5 K−1, in perfect agreement with the value obtained by Ercolessi and Adams424

†† Note that V/V0 ≈ 3a/a0, and θ = ∆V/V0 ≈ 3∆a/a0.
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Figure 9. Normalized vDOS as a function of the normalized lattice parameter a/a0

for cubic 10× 10× 10a0 Al crystallites with different boundary conditions. Volumetric

expansion results in a narrowing of the populated frequency band. The dashed curve

represents the same system in both subfigures.

from MD simulations.425

This result confirms the validity of the quasiharmonic approximation for Al and426

allows us to undertake the coarse-mesh calculations with confidence. However, for427

further verification, we now repeat this calculation for a 10a0×10a0×10a0 finite system428

(4631 atoms) with free boundaries, akin to those used in QC simulations. The volume-429
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Figure 10. (Left) Free energy as a function of the normalized lattice parameter at five

representative temperatures for fully atomistic Al systems. The minima of the fitted

2nd-order polynomials (marked with a black ’x’) are the equilibrium lattice parameter

at each temperature, normalized to the bulk a0 of 4.032 Å. (Right figure) Temperature

dependence of the equilibrium lattice parameter. The derivative of the linear fit to the

data gives the thermal expansion coefficient. The results are normalized in each case

to the lattice parameter a(0) that gives the equlibrium volume at 0K, i.e. 4.032 and

4.021 Å, respectively.

dependent eigenfrequencies are again given in Fig. 9(b), whereas the quasiharmonic430

analysis is shown in Fig. 10(b). This time, the calculation yields α = 1.71 × 10−5 K−1,431
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which is in excellent agreement with the the value of α = 1.70 ∼ 1.72×10−5 K−1 obtained432

directly from QC dynamical simulations in Fig. 2. Although here we are concerned with433

system containing 17969 and 137313 atoms, the size of the dynamical matrices that can434

be diagonalized (3Nh × 3Nh) is restricted to ≈ (13, 500 × 13, 500). However, as for the435

simulations carried out in Section 4.1.1, the good agreement between this calculation436

for the 10a0 × 10a0 × 10a0 sample and the results obtained for the 16a0 × 16a0 × 16a0437

and 32a0 × 32a0 × 32a0 sytems suggests that we are beyond the limit where surface438

effects depend on length scale. Thus, this value of ≈ 1.71 × 10−5 K−1 constitutes our439

reference baseline against which all the coarse systems to be studied subsequently are440

benchmarked.441

Having confirmed the validity of the approach described in Section 3.5, we now442

study mesh and cluster size effects according to Section 3.4. First, we compute the443

vibrational DOS for different coarse systems, i.e. n′
h 6= 1, and, subsequently, calculate444

α by the procedure described in Fig. 10. The DOS for all the (17969, Nh, rc) systems445

considered in this work are given in Fig. 11 as a function of cluster and mesh size.446

The thermal expansion coefficients associated with these meshes are given in table447

4. The number of cases for the 32a0 × 32a0 × 32a0 system is again limited by the size of448

the dynamical matrices that can be diagonalized. Therefore, here, we calculate α only449

for n′
h = 188.4 and 55.9 (729 and 2457 nodes).

Table 4. Thermal expansion coefficients (in K−1) calculated within the quasiharmonic

approximation for the systems considered in Table 3. ‘–’ symbols indicate

that the diagonalization of the corresponding dynamical matrices was beyond our

computational capabilities.

Mesh size Cluster size

Nh n′
h 2 3 4

1
6
a
0
×

1
6
a
0
×

1
6
a
0

27 666.3 7.28 × 10−8 4.33 × 10−8 4.88 × 10−8

125 143.9 1.81 × 10−7 2.09 × 10−7 1.55 × 10−7

365 49.3 4.06 × 10−7 3.77 × 10−7 3.52 × 10−7

729 24.7 8.92 × 10−7 8.30 × 10−7 8.11 × 10−7

2457 7.3 2.50 × 10−6 2.35 × 10−6 2.35 × 10−6

4913 3.7 – – –

3
2
a
0
×

3
2
a
0
×

3
2
a
0 729 188.4 1.27 × 10−7 1.19 × 10−7 1.21 × 10−7

2457 55.9 3.71 × 10−7 3.46 × 10−7 1.03 × 10−6

4913 27.9 – – –

17969 7.6 – – –

35937 3.8 – – –

450

The results obtained thus far suggest that cluster size has a negligible impact on the451

thermal expansion behavior of the tested coarse Al samples (cf. Figs. 7, 6 and 8). In fact,452
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Figure 11. Normalized vibrational spectra for different (17969, Nh, rc) systems.

Superimposed for comparison is the DOS for the atomistic system.

cluster size is seemingly only important in the context of static energy minimizations (cf.453

Figs. 4 and 11). However, eqs. (42) and (43) imply a direct correspondance of the normal454

modes of vibration with h and rc. This correspondence is multiplicatively composed of455
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a (rc/h)3 term derived from the nodal masses, and an undefined dependence through456

the force constants. We next study these two contributions separately.457

4.1.3. Analysis of mesh and cluster effects on the entropy of QC systems. Let us now458

briefly return to Fig. 11, from which several interesting observations can be extracted.459

First, as expected from eq. (43), there is a direct correlation between rc and the hardness460

of the vibrational spectra for each mesh. Cluster overlap at large values of n′
h —i.e.461

relatively fine meshes— results in identical dynamical matrices. This is the reason why,462

for Nh = 2457 (for rc = 3, 4) and 4913 (for all rc), the DOS is independent of rc.463

Evidently, the corresponding thermal expansion coefficients shown in Table 4 are also464

independent of the cluster size. This behavior is also captured within numerical error465

in the dynamic simulations of α by the (17969, 2457/4913, rc) and (137313, 17969, rc)466

systems (cf. Table 3). Assuming, as eq. (43) indicates, that the vibrational spectra are467

shifted with respect to one another by a factor λ ∝ rp
c , we calculate in Table 5 the468

average shift for each mesh considered in Table 4. λ is calculated as the ratio between

Table 5. Average eigenfrequencies (in THz), ω̃, and relative ‘shift’, λ, of the

DOS of all the 16a0 × 16a0 × 16a0 meshes. λ is computed as the ratio between

the average eigenfrequencies of each DOS. Note that rc(3)/rc(2) = 1.225a0/a0 =

1.22, rc(4)/rc(3) = 1.414a0/1.225a0 = 1.15, and (rc(3)/rc(2))
3/2

= 1.36 and

(rc(4)/rc(3))
3/2

= 1.24. The cases where there is cluster overlap are separated by

a dashed line. The full atomistic case is shown at the end of the table for reference.

Nh n′
h ω̃|rc=2 ω̃|rc=3 ω̃|rc=4 λ2→3 =

ω̃|
rc=3

ω̃|
rc=2

λ3→4 =
ω̃|

rc=4

ω̃|
rc=3

27 666.3 3.14 3.52 4.11 1.12 1.16

125 143.9 5.59 6.38 7.48 1.14 1.17

365 49.3 7.70 9.22 10.39 1.19 1.12

729 24.7 8.40 8.93 9.79 1.06 1.10

2457 7.3 8.44 8.44 8.44 1.00 1.00

4913 3.7 7.57 7.57 7.57 1.00 1.00

atomistic 1.0 5.59 5.59 5.59 1.00 1.00

469

the characteristic frequencies, ω̃, of the vDOS corresponding to each cluster size. To470

first order, ω̃ can be identified with the mean of each vibrational distribution given in471

Fig. 11, which are given in Table 5. The data suggests that the exponent to which rc is472

elevated ranges between p = 0.55 and 1.15. It is certainly lower than the weight factor473

r1.5
c given in eq. (43), suggesting that the force constants may govern how the vibrational474

properties of a given mesh vary with cluster size. Regarding mesh size effects, the weight475

factor from eq. (43) again suggests an ω ∝ h−1.5 dependence. However, the calculated476

ω̃ display the curious behavior shown in Fig. 12(a), characterized by a maximum at477

n′
h ≈ 50. For larger meshes, the mean frequency decreases as n′

h
−0.37, whereas in the478
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range where there is cluster overlap the mean frequency (slightly) increases with mesh479

size. This is a most puzzling observation, as it is well known that finer meshes can480

support higher-frequency vibrations. This again may be related to the force constant481

term in eq. (43), whose cluster and mesh dependencies we set out to study.482

Force constants are categorized according to their direction and the nearest neighbor483

shell they correspond to. Here, we restrict ourselves to the largest force constant for a484

given mesh, as these are the ones which result in the highest vibrational frequencies.485

Generally, the largest force constants correspond to first-nearest neighbor distances and486

directions, φ11
†.487

Of course, in different crystal lattices —e.g. fcc and sc— φ11 does not necessarily488

correspond to the same direction and/or distance. For example, in sc systems, φ11 is489

along the 〈100〉 direction, whereas in fcc crystals it is defined for the 〈110〉 direction.490

In our QC systems with sc meshes φ11 is indeed the largest force constant observed.491

However, in the fcc meshes, we have seen that the force constants along the second492

nearest neighbor direction, φ21, are roughly three times larger than φ11. Therefore,493

we study the mesh and cluster size dependencies of φ11 and φ21 for, respectively, sc494

and fcc triangulations. The results are shown in Fig. 12(b), where, in accordance495

with eq. (43), we plot the values of
√

φ. It can be immediately seen that, from a496

qualitative standpoint, the mesh dependence of the force constants mirrors that of ω̃.497

The characteristic exponent of the power law fit to the three largest meshes is −0.20.498

Assuming that the characteristic exponent of ω̃ results from the combination of a force499

constant plus a mass factor, we have that the latter is −0.37−(−0.20) = −0.17, far from500

the h−1.5 dependence extracted from eq. (43). The behavior for finer meshes remains501

unexplained, an issue that we shall discuss in the following section.502

In any case, we conclude that the force constant term is the dominating one in503

eq. (43) and explains the unusual behavior in the DOS (Fig. 11) of the studied meshes.504

Nevertheless, the impact of this anomalous behavior on the thermal expansion coefficient505

is negligible in view of the calculated data in Table 4. This is owed to the reduced506

summation space in eq. (49), and to the fact that the derivatives of the eigenfrequencies507

with respect to (1 − θ) are seemingly not affected by this phenomenon. As well, we do508

not discard the possibility that this effect, extracted from static calculations, does not509

manifest itself during the course of dynamical simulations.510

4.2. Tantalum results.511

4.2.1. Thermal expansion from dynamic simulations. As a representative bcc material512

for this study we have chosen Ta, for which some experience using static QC exists513

[27]. Ta is modeled using the EAM potential developed by Li et al [67], which has514

been fitted to an experimental equation of state that includes data at 10% compression.515

† Here we follow the standard notation where the first subindex refers to the nearest-neighbor shell

and the second one to represent whether the force constant is longitudinal (‘1’) or transversal (‘2’ or

‘3’).
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(b) Force constants as a function of mesh size. Solid symbols correspond
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In each case, we plot the largest force constant that appears in the crystal,

regardless of the nearest neighbors shell they correspond to (φ21 for sc

structures, and φ11 for fcc).

Figure 12. Mesh dependences of the mean eigenfrequencies and force constants for

the 16a0 × 16a0 × 16a0 system. The dotted line corresponds to power law fits to the

three largest meshes, with characteristic exponents of −0.37 for ω̃ and −0.20 for
√

φ.

Figure 13 shows the temperature dependence of the Ta lattice parameter for a periodic516

system using molecular dynamics [67] compared to the experimental data points given by517

Touloukian et al [60]. The atomistic data show inverse thermal expansion below 298K,518
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which is an artifact of the interatomic potential [67]. As the third-degree polynomial519

fits show, the thermal expansion coefficient displays a strong temperature dependence.520

Between 500 and 1500K —where a reasonably linear dependence is found—, Touloukian521

et al give a value of α = 7.79 × 10−6 K−1, whereas the MD results suggest a value of522

6.02 × 10−6 K−1. As T increases, however, this agreement is lost and the differences523

become more pronounced.
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Figure 13. Variation of the bcc Ta lattice parameter with temperature comparing four

different cases. The solid dots correspond to the experimental data above 298K given

by Touloukian et al [60]. Inverted triangles are MD calculations for a periodic system

performed by Li et al [67]. Finally, the solid triangles and open dots correspond to QC

dynamic simulations at zero pressure of finite 20a0×20a0×20a0 and 30a0×30a0×30a0

systems. All the data are normalized to the value of a0 at 298K. Solid lines are third-

degree polynomial fits to the data.

524

For our dynamic QC study, we have analyzed finite 20a0 × 20a0 × 20a0 (17261525

atoms) and 30a0 × 30a0 × 30a0 (56791 atoms) finite systems. As for Al, we start by526

obtaining the corresponding atomistic thermal expansion behavior. Results are also527

shown in Figure 13, where several features are noteworthy. First, thermal expansion in528

finite systems is considerably suppressed with respect to the periodic (infinite) sample.529

Second, both curves reproduce the artificial negative thermal expansion coefficient530

below room temperature. Additionally, at high temperatures, the behaviors of the531

20a0 × 20a0 × 20a0 and 30a0 × 30a0 × 30a0 systems gradually diverge. The polynomial532

fits to the QC data are given in Table 6. The average thermal expansion coefficient in533

the 1000 < T < 2000K interval is, respectively, 4.14× 10−6 and 2.36× 10−6 K−1. These534

now constitute our reference values for the coarse QC simulations.535
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Table 6. Coefficients of the third degree polynomials [a(T )/a(298K) − 1] = aT 3 +

bT 2 + cT + d for the data from dynamic QC simulations plotted in Fig. 13. The linear

thermal expansion coefficient is calculated as: α(T ) = 3aT 2 + 2bT + c.

Sample size a b c d

20a0 × 20a0 × 20a0 −6.52 × 10−13 3.67 × 10−9 −3.59 × 10−6 1.28 × 10−3

30a0 × 30a0 × 30a0 −3.37 × 10−13 2.09 × 10−9 −2.07 × 10−6 5.23 × 10−4

The discrepancies observed between the two finite systems studied and the periodic536

one could indicate that surface effects are non-negligible in this case. This is further537

substantiated by the difference between the 20a0 × 20a0 × 20a0 and 30a0 × 30a0 × 30a0538

systems themselves. Next, we examine the thermal expansion behavior of gradually539

coarser meshes. The calculated database for Ta is not as extensive as for Al, and540

only three meshes are studied for the 20a0 × 20a0 × 20a0 sample and four for the541

30a0 × 30a0 × 30a0 one. Figures 14 and 15 show the respective thermal expansion542

behaviors using three cluster sizes. In the bcc lattice, rc=2, 3, 4 correspond to nearest543

neighbor shells within a distance of a0, 1.414a0 and 1.658a0, containing 14, 26 and 50544

atoms, respectively.
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Figure 14. Thermal expansion behavior of the 20a0 × 20a0 × 20a0 system (17261

lattice sites). Three meshes, with three cluster sizes each, are considered. All meshes

show negative thermal expansion until approximately 500K, at which point the lattice

parameter becomes independent of T (α = 0). We recall that n′
h = N/Nh is the

effective nodal weight.
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Figure 15. Thermal expansion behavior of the 30a0 × 30a0 × 30a0 system (56791

lattice sites). Four meshes, with three cluster sizes each, are considered. All meshes

show negative thermal expansion until approximately 1000K, after which the lattice

parameter becomes independent of T (α = 0).

The following general observations can be extracted from both figures:546

• All meshes display negative thermal expansion behavior up to temperatures of547

approximately 500K (20a0 × 20a0 × 20a0) or 1000K (30a0 × 30a0 × 30a0)548

• From that temperature onwards, all meshes remain insensitive to temperature,549

resulting in zero thermal expansion coefficients.550

• Generally, increasing coarsening results in a more pronounced thermal contraction.551

Cluster size has little or no effect for low values of n′
h, while large variations appear552

for coarse meshes. However, these variations are seemingly uncorrelated with the553

cluster size.554

In other words, the thermal expansion behavior of coarse EAM Ta only likens that of555

the atomistic system for temperatures below 300K (which is known to be incorrect). At556

higher temperatures, the a0-T simulations display very little structure and do not offer557

non-zero thermal expansion coefficients. Thus, there is no basis to carry out an analysis558

such as that presented in Fig. 8 for Al.559

4.2.2. Thermal expansion from free-energy calculations in the quasiharmonic560

approximation. For consistency, however, we next calculate the thermal expansion561

coefficients αPBC and αFS for periodic and finite atomistic crystals within the562

quasiharmonic approximation. We study a periodic (infinite) 7a0 × 7a0 × 7a0 crystal563
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containing 686 atoms, and a 12a0 × 12a0 × 12a0 finite crystal containing 3925 atom,564

which yields the largest possible diagonalizable dynamical matrix. Figure 16(a) shows565

the normalized eigenfrequency spectra for the periodic sample for several different lattice566

parameters. The results for the finite system are given in Fig. 16(b), where a shift to567

lower frequencies is observed as the lattice parameter is increased. Interestingly, the568

differences among the lattice parameters considered are much less pronounced than569

for the Al results shown in Fig. 9, which suggests a weaker volume (temperature)570

dependence.571

As in Section 4.1.2, from these data we calculate α for Ta within the quasiharmonic572

approximation. This gives rise to constant thermal expansion coefficients of αPBC =573

7.30 × 10−7 and αFS = −2.42 × 10−7 K−1, respectively. These coefficients are574

substantially different than those corresponding to the periodic and finite systems in575

the temperature range where linearity is observed (1000 to 2000K). In fact, αPBC576

corresponds to a temperature of 364K for the MD system in Fig. 13, while αFS577

corresponds to temperatures of 531K and 497K for the 17261 and 56791-atom systems578

respectively, in the anomalous temperature region of the potential. This suggests that579

the quasiharmonic approximation is not a satisfactory one in the case of EAM Ta.580

Indeed, MacDonald and Shukla had already noted the difficulties to replicate the thermal581

expansion behavior of refractary metals such as Ta using atomistic calculations with582

central force potentials [68].583

A quasiharmonic analysis of mesh and cluster effects in Ta, such as that performed584

for Al in Section 4.1.3, is therefore not warranted in this case, since not even the585

atomistic behavior is captured. We simply conclude that the thermal expansion behavior586

of EAM Ta displays a complex temperature dependence and that the quasiharmonic587

approximation is only valid in the low temperature regime, where EAM Ta behaves588

anomalously in any event. Of course, we do not discount other potentials for Ta589

(perhaps including angular terms [69], or fitted to thermal expansion data [70]) from590

offering a more satisfactory behavior for coarse meshes. However, an analysis of different591

interatomic potentials is not the subject of this work and we leave this comparison for592

future studies.593

5. Discussion and conclusions594

We have proposed a dynamic version of the Quasicontinuum method based on Brownian595

dynamics modeled via a Langevin equation. The resulting stochastic differential596

equation is integrated in time using Newmark’s (β = 0; γ = 1
2
) method, which is597

seen to behave robustly even for very coarse meshes. The method reduces to full598

molecular dynamics in the atomistic limit and a system of strongly-coupled oscillators599

in the coarse limit. The main limitations are two, namely, (i) that the attainable time600

steps are bounded by the fastest nodal vibrations, which for atomistic systems can be601

of the order of fs, and (ii) that it contains no particular mechanism for suppressing602

wave reflections at mesh boundaries. The unphysically accumulated heat is dealt with603
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Figure 16. Normalized vDOS as a function of the normalized lattice parameter a/a0

for cubic Ta crystallites with different boundary conditions. a0 is 3.3026 Åfor an infinite

system and 3.2782 Åfor our 12a0×12a0×12a0×a0 finite crystal. The differences among

the studied lattices are much more subtle than for Al (cf. Fig. 9).

explicitly by overdampening to maintain stable dynamics. Methods to increase the604

timestep in unstructured triangulations have been proposed. For example, Kane et al605

[40] and Lew et al [71] have developed a class of asynchronous variational integrators606

(AVI) for non-linear dynamics that permit the selection of independent time steps in607

each element. AVI are derived from a discrete form of Hamilton’s variational principle,608
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which makes the algorithm conserve its multisymplectic structure. These features make609

it an attractive integrator for dissipative mechanical systems in unstructured meshes.610

Coupling AVI to our dynamic QC framework could significantly enhance the extent of611

time scales probed during simulations where meshes are adaptively refined.612

(Given the number of abnormalities attendant to EAM Ta, we omit it from the

succeeding discussion). Our metric of choice to assess the entropic impoverishment of

coarse meshes is the thermal expansion coefficient α. For fcc Al, our method recovers

the atomic α —as given by the interatomic potential employed— in the atomistic limit,

and produces coarse thermal expansion coefficients that obey the relation:

α(n′
h) ≈

1.53 × 10−5

n′
h

≈ αatNh

N
(53)

This linear dependence with the number of nodes (or inverse with the mesh size)613

permits the use of rescaling coefficients to account for the loss of vibrational entropy.614

For example, to compute ensemble averages at temperature T in a mesh (N,Nh, rc),615

one would first calculate the corresponding α(n′
h) from eq. (53); then, the equivalent616

temperature at which the said mesh would reproduce the full thermal behavior could617

be obtained by applying a rescaling of the type Tαat/α
′ = T ′.618

The cluster size has no effect on dynamic simulations (cf. Fig. 8), only on static619

calculations, via V0, which enters the formula to compute α as a normalization factor, eq.620

(51). The phenomenology of the cluster size effect on V0 can be rationalized as follows.621

In dynamic simulations, the effect of the cluster size on the bulk nodes becomes smeared622

by thermal energy, i.e. the nodal kinetic energy washes out the subtle differences caused623

by the cluster size in the calculation of the forces. Surface nodes have higher energies624

than bulk nodes but, at finite temperatures, the differences due to the cluster size625

become smeared out as well. However, in static simulations the exposed surface that is626

not contained in any cluster (the internodal area beyond the cluster radii) has a higher627

energy than the surface represented/contained in the clusters. Therefore, the system628

will tend to ‘shrink’ these regions to minimize the energy. This capillary effect, only629

important at 0K, results in lower expansion volumes.630

In the QC formulation considered here [20], nodal forces are computed from rigid631

clusters that do not contribute to the system’s entropy. Therefore, entropic losses in632

coarse meshes are mainly due to a reduced configurational space. To mitigate this633

shortcoming, nodal forces could be calculated from the derivatives of the free energy at634

the cluster level, rather than just from the potential energy as in eq. (7). The free energy635

at the cluster level could be built assuming the quasi or local harmonic approximations636

[72] to pre-compute a set of Grüneisen paremeters to couple the normal frequencies to637

the deformation gradient from which cluster sites are interpolated. This is similar to638

finite-temperature quasistatic methods which build their free energy functionals from639

the underlying static lattice. However, these types of formulations typically rely on640

macroscopic averages, which are incompatible with Hamilton’s equations, as has been641

discussed by Rodney [73].642
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While attempting to rationalize entropic losses in coarse QC meshes by using

the quasiharmonic approximation, we have found that their vibrational densities of

states display an unexpected behavior. Intuitively, coarser meshes give rise to narrower

frequency spaces, a consequence of the incapacity of a coarse mesh to support short

wavelength (high-energy) modes. In an homogeneous system, the short wavelength

limit is dictated by the shortest nodal distance, which of course depends on the

mesh size. However, for Al we have found that the vibrational spectra is hardest for

intermediate coarsening meshes (cf. Fig. 11(b)). This effect cannot be explained using

nodal mass arguments alone, as we have shown in Fig. 12(a). Instead, we have seen

that this anomalous behavior is caused by the force constants (Fig. 12(b)). This may

be an artifact caused by QC’s intrinsic formulation, which we rationalize as follows.

For homogeneous deformations, such as those induced by thermal expansion, crystal

properties are independent of the mesh size. In such cases, eqs. (7) are only affected

by the cluster size and the nodal weights nh. Then, for a given cluster radius, it is the

nodal weights that determine the magnitude of the nodal forces and, in turn, the force

constants. However, as eq. (40) shows, when the cluster size is sufficently large to cause

cluster overlap all weights are set to one. In such cases, eq. (41) simply becomes:

Dαβ(l, l′) = Kαβ(l, l′)/ma

and the eigenfrequencies depend solely on the value of the force constants. In our Al643

16a0 × 16a0 × 16a0 samples, for rc = 4, cluster overlap can first occur for Nh ∼ 332,644

consistent with the value where the force constants are maximum in Fig. 12(b) (at645

Nh = 365). From that point on, the force constants gradually decrease to their atomistic646

value.647

This anomaly could be erradicated if n′
h, rather than nh, were used as nodal648

weights. However, the set of {nh} ensures that summation rules are exact for all shape649

functions in eq. (4) and they cannot be altered. In any case, this anomalous behavior650

is not transmitted to the quasiharmonic calculation of thermal expansion coefficients,651

which are consistent with those obtained via fully-dynamical QC simulations. In any652

case, an interesting exercise outside the scope of this paper would be to study wave653

transmission from atomistic domains into coarser regions. Conceivably, the reflection of654

fine-scale vibrations at these boundaries could become suppressed if it is confirmed655

that coarse domains within our dynamic QC framework can support them. This656

is only speculation, of course, as a detailed study of transmissions/reflections across657

inhomogeneous boundaries should be performed.658

We finish by pointing out that the interest in a finite-temperature extension of QC659

mainly resides in the fact that the zero-temperature Quasicontinuum method has been660

widely used to study diverse problems (see Section 1 for details). Therefore, our intention661

with this work was not simply to add yet another dynamic atomistic/continuum-662

bridging method to the catalog of available methodologies, but to provide a dynamic663

generalization to a technique which has been applied to many problems of interest. In664

this sense, our method stands next to techniques such as MD/CADD [18], which is has665
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also been used widely (see Curtin and Miller [2], and references therein). However, a few666

differences exist between dynamic QC and MD/CADD. For example, in our method the667

non-atomistic region is fully dynamic, whereas it remains quasistatic in MD/CADD.668

Because of this, α appears naturally in QC (fully anharmonic), while in MD/CADD669

it has to be imposed externally. Another difference pertains to the utilization of the670

damping coefficient: in MD/CADD, ν is gradually ramped from zero in the coarse region671

to νat at the atomistic boundary; in QC each node is automatically assigned a viscosity672

commensurate with its mass.673
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Appendix: Derivation of the free energy expression.680

We start from the expression for the partition function of a system of distinguishable

particles, eq. (45):

Zh(θ, T ) =
1

(2π~)3Nh

∫

X

exp
{

− Hh(qh,ph, θ)

kBT

}

dqhdph (A.1)

Integration over momenta can be separated out from eq. (A.1), giving:

Zh(θ, T ) =

(

mhkBT

2π~2

)3Nh/2 ∫

X

exp
{

−Φh(qh, θ)

kBT

}

dqh (A.2)

Hence, the free energy of the system is:

Fh(θ, T ) = −kBT ln Z(θ, T ) =

= −kBT

(

ln

∫

X

exp
{

−Φh(qh, θ)

kBT

}

dqh +
3Nh

2
ln

mhkBT

2π~2

)

(A.3)

To find solutions of the configuration integral in the first term of the r.h.s. of (A.3) we

assume for Φ the harmonic form introduced in eq. (34):

Φh(uh, θ) ≈ Φh(0, θ)) +
1

2

∑

lh

∑

l′
h

Dαβ(lh, l
′
h)|0 uh(lh)uh(l

′
h) (A.4)
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where both the zero-th and second order terms are evaluated in equilibrium

(configurational state 0). Equation (A.3) then becomes:

Fh(θ, T ) ≈ −kBT

(

3Nh

2
ln

mhkBT

2π~2
+

+ ln

∫

X

exp

{

−Φh(0, θ) + 1
2

∑∑

Dαβ(0)uhu
′
h

kBT

}

duh

)

(A.5)

where, for clarity, we have simplified the notation by ommitting the dependence on lh

and eliminating running indices from the summations. The configuration integral can

be simplified by applying the logarithm:

Fh(θ, T ) ≈ −kBT

(

3Nh

2
ln

mhkBT

2π~2
− Φh(0, θ)

kBT
+

+ ln

∫

X

exp

{

−
1
2

∑∑

Dαβ(0)uhu
′
h

kBT

}

duh

)

(A.6)

By virtue of eq. (37), the double sum in eqs. (A.5) and (A.6) can be replaced with a

single product when the transformation matrix is diagonal, i.e. eq. (A.6) can be reduced

to:

Fh(θ, T ) ≈ Φh(0, θ) − kBT

(

3Nh

2
ln

mhkBT

2π~2
+

+ ln

∫

X

3Nh
∏

i

exp

{

−ωi
2ui

2

2kBT

}

dui

)

(A.7)

After performing the change of variable xi = ωi(θ)ui/
√

2kBT and converting the

logarithm of a product into a sum of logarithms, the integral becomes:

Fh(θ, T ) ≈ Φh(0, θ) − kBT

(

3Nh

2
ln

mhkBT

2π~2
+

+

3Nh
∑

i

ln

{
√

2kBT

ωi(θ)

∫

X

exp
(

−xi
2
)

dxi

}

)

(A.8)

where the term inside the logarithm is simply a Gaussian integral, which integrated

over the entire configurational space (
∫

X
≡
∫∞
−∞) is

√
π. Thus:

Fh(θ, T ) ≈ Φh(0, θ) − kBT

(

3Nh

2
ln

mhkBT

2π~2
+

3Nh
∑

i

ln

{
√

2πkBT

ωi(θ)

}

)

(A.9)



Marian et al 42

Decomposing the last term into a sum of logarithms, we arrive at:

Fh(θ, T ) ≈ Φh(0, θ) − kBT

(

3Nh

2
ln

mhkBT

2π~2
+

+ 3Nh ln
√

2πkBT −
3Nh
∑

i

ln {ωi(θ)}
)

(A.10)

and:

Fh(θ, T ) ≈ Φh(0, θ) − kBT

(

3Nh

2

(

ln
mhkBT

2π~2
+ ln 2πkBT

)

−
3Nh
∑

i

ln {ωi(θ)}
)

(A.11)

which, after operating slightly, is the final form for the free energy given in eq. (46)681
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